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Magnetic field dependence of the many-electron states in a magnetic quantum dot:

The ferromagnetic-antiferromagnetic transition

Nga T. T. Nguyen* and F. M. Peeters’
Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
(Received 17 January 2008; revised manuscript received 4 June 2008; published 25 July 2008)

The electron-electron correlations in a many-electron (N,=1,2,...,5) quantum dot confined by a parabolic
potential is investigated in the presence of a single magnetic ion and a perpendicular magnetic field. We
obtained the energy spectrum and calculated the addition energy which exhibits cusps as a function of the
magnetic field. The vortex properties of the many-particle wave function of the ground state are studied and for
large magnetic fields are related to composite fermions. The position of the impurity influences strongly the
spin-pair-correlation function when the external field is large. In a small applied magnetic field, the spin-
exchange energy together with the Zeeman terms leads to a ferromagnetic-antiferromagnetic (FM-AFM) tran-
sition. When the magnetic ion is shifted away from the center of the quantum dot, a remarkable re-entrant
AFM-FM-AFM transition is found as a function of the strength of the Coulomb interaction. Thermodynamic
quantities such as the heat capacity, the magnetization, and the susceptibility are also studied. The cusps in the

energy levels show up as peaks in the heat capacity and the susceptibility.
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I. INTRODUCTION

Magnetically doped quantum dots! have attracted consid-
erable theoretical and experimental interests over the last two
decades. Diluted magnetic II-VI and III-V semiconductor
(DMS) quantum dots were fabricated with single-electron
control.>3 A rich variety of different magnetic and optical
properties were discovered.*"' In such structures one can
explore the physical properties coming from intercarrier in-
teractions and the interaction of the carriers with the mag-
netic ion. This system promises to be relevant for future
quantum computing devices, where for instance the spin of
the magnetic ion is used as a quantum bit. More recently,
electrically active devices were fabricated in which a single
manganese ion is inserted into a single quantum dot!! with
control of the amount of charge in the quantum dot and con-
sequently the possibility of control of magnetism of single
Mn-doped quantum dots.

The investigation of the exact electronic structure of a
two-dimensional quantum dot confined by a parabolic poten-
tial containing several electrons and a single magnetic impu-
rity (in this paper Mn?*) in the presence of an applied mag-
netic field is a new topic. In a recent investigation,'? a three-
dimensional (3D) Cd(Mn)Se quantum dot containing several
electrons, where only the low-energy levels of the single-
electron problem were taken into account, was investigated
in the presence of a magnetic field. Here we will extend this
work and include all relevant energy levels in order to obtain
a convergent solution for the ground state (and also the ex-
cited spectrum) of the system.

It is known that in the absence of a magnetic ion, an
external magnetic field is able to change the spin-polarized
state of weakly interacting N, electrons in a quantum dot in
such a way that in the ground state it maximizes the total
spin of the system: i.e., S=N,/2. If the interparticle interac-
tion is strong, even without an applied magnetic field the
electrons may already be polarized. However, with increas-
ing magnetic field and in the case that the interparticle inter-
action is strong, the total spin of the system can be unusually
reduced by the magnetic field."3
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In the present study, we investigate theoretically the few-
electron two-dimensional confined quantum dot system that
contains a single magnetic ion in the presence of an external
magnetic field taking into account a sufficient large number
of single-particle orbitals such that numerical “exact” results
are obtained. We explore how sensitive the whole system is
to the position of the magnetic ion in the quantum dot and to
the presence of a magnetic field. Moreover, we investigate
the competition between the following three energies: (i) the
interaction of the magnetic ion with the electrons, (ii) the
interaction of the magnetic ion with the magnetic field, and
(iii) the interaction of the external field with the electrons.
These terms affect the spin polarization of the N, electrons in
the quantum dot.

Explicit studies of an N,-correlated-electron system inter-
acting with a single magnetic ion in nonzero magnetic field
are very rare in the literature. Recent theoretical'%!>!415 and
experimental works'! focused either on a small number of
electrons using the exact diagonalization approach at zero
field (Refs. 14 and 15) for a two-dimensional (2D) quantum
dot or at nonzero field'? including only the lowest single-
particle states for a 3D system or on the exciton states rel-
evant for optical spectroscopy of self-assembled magneti-
cally doped quantum dots.'%!!

Here, we will examine thoroughly the exact properties of
the system containing several correlated electrons and a
single magnetic impurity in the presence of a magnetic field.
In our numerical “exact” diagonalization approach, we in-
clude an arbitrary number of single-particle states to guaran-
tee the accuracy of our results. We investigate the influence
of the strength of the interparticle interaction and the position
of the magnetic ion on the ground state of the system. We
predict the interesting phenomenon that the magnetic ion fer-
romagnetically couples with the electrons in a region below a
critical magnetic field and antiferromagnetically with the
electrons above this critical field. Thermodynamic properties
such as magnetization, susceptibility, and heat capacity are
investigated as a function of magnetic field and temperature.

This paper is organized as follows: Section II introduces
the model and the numerical method. In Sec. III, we present
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our numerical results for the many-particle ground state and
investigate correlations through the appearance of vortices in
the many-electron wave function. Section IV addresses the
many-particle spectrum and in Sec. V we present results for
different thermodynamic quantities. Our discussion and con-
clusions are presented in Sec. VI.

II. THEORETICAL MODEL

A quantum dot containing N, electrons with spins s; con-
fined by a parabolic potential and interacting with a single

magnetic ion (Mn?*) with spin M and a magnetic field is
described by the following Hamiltonian:

N
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The vector potential A is taken in the symmetric gauge: A

=B/2(-y,x,0), where the magnetic field B points perpen-
dicular to the plane of the interface. The confinement fre-
quency w, is related to the confinement length by I,

=\h/m*w,. g, and gy, are the Landé g factors of the host
semiconductor and the magnetic ion, respectively. The di-
mensionless Coulomb strength is defined as No=[y/ap, with
ay=4meyeh’/m*e? as the effective Bohr radius. The cyclo-
tron frequency is w.=eB/m". L, S., and M, are the projec-
tions of the total angular momenta of the electrons, their
spins, and the magnetic ion in the direction of the magnetic
field. The electrons and the magnetic impurity in the quan-
tum dot interact via the contact exchange interaction with
strength J...

We use the set of parameters’!# that is applicable to
Cd(Mn)Te which is a II(Mn)VI quantum dot with typical
lateral size of about tens of nanometers. The dielectric
constant €=10.6, effective mass m*=0.106m, a2=52.9 A,
g,=—1.67, gy=2.02, J.=1.5X 10° meV A2 and [, is about
tens of nanometers (fw, corresponding to tens of meV). For
example, iwy=51.32 meV gives [;=26.45 A.

We rewrite the Hamiltonian in the second-quantized form:

Vo

- 1 ..
H= E Ei,oc:(rci,a'-" E 2 <l’] k’l>c:(rc;,g—’ck,0’cl,a'
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where the first term is the single-particle energies E; , for an
electron in state i with spin o and the second term is the
Coulomb interaction. The third term is the electron and mag-
netic ion Zeeman energy. The last sum is the electron-Mn
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interaction, in which the first term describes the difference
between the number of spin-up and spin-down electrons and
the last two terms describe the energy gained by flipping the
electron spin alongside with flipping the spin of the magnetic
ion. M, M*, and M~ are the z-projection raising and lowering
operators, respectively, of the magnetic ion spin (we consider
Mn ions which have a spin of size M=5/2).

The single-particle states in a parabolic confinement po-
tential define a complete basis of Fock-Darwin orbitals ¢,,(r)
and spin functions x,(s):

¢nl(r(;’§) = qonl(;)X(r(*;)s (3)

with the Fock-Darwin orbitals

1 n! P\ 252
[ S [ —il6 12057 |1l 272
(Pnl(;) - lH (I’l + |l|)'(lH> e e HLn (r /lH) (4)

In Hamiltonian (2), i denotes a set of quantum numbers {n, [}
with n,/[ as the radial and azimuthal quantum numbers, re-
spectively. The effective length Iy=\A/m*wy=1y/a in the
presence of a magnetic field is defined through the hybrid
frequency wpy=wo\1+(w,/2w,)?, where a={1+(w,/2w)>.
The single-particle orbital energy is given by

E o=toyn+|l|+1) - fiwld/?2. (5)

The interaction parameters between the electrons and the
magnetic ion in the quantum dot is expressed as

J(R) = 1./ (R)¢/(R), (6)

as a product of two Fock-Darwin orbitals calculated at the
position of the magnetic ion.

We construct the many-particle wave function following
the configuration-interaction (CI) method:

Ne

W(x],X5, .. ,x}i,e,M) = E cv,, (7)
k=1

where W, is the kth state of the noninteracting many-electron
wave function determined by N, electrons with N, different
sets of quantum numbers (n,/,0) and the single scatterer

with one of the six states of the Mn. )_cjL = (;:,) ,s_:-) stands for the
coordinates and spin of a single electron. In second quanti-
zation representation, the state W, which is a Slater determi-
nant composed of single-electron states, can be translated
into a ket vector |k) grouping a total of N, electrons into Ny
electrons with the z component of spin up and N|=N,—N;
electrons with the z component of spin down:

o M. ()

Here ij;+iy; and j,|+jy; are the indices of the single-
electron states for which each index is a set of two quantum
numbers (radial and azimuthal quantum numbers), as men-
tioned above.

The CI method, which is in principle exact if a sufficient
number of states are included, is limited to a small number of
electrons due to computational limitations. For a larger num-
ber of electrons and/or magnetic ions, other approaches that,
e.g., are based on spin-density-functional theory (SDFT) us-
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FIG. 1. (Color online) Total Zeeman energy for a quantum dot
with different numbers of electrons. The magnetic ion is located at
(0.411,,0), and the Coulomb interaction strength \=0.2. The inset
is the first derivative of A, with respect to (). that highlights the
nonlinearity of A, in certain regions of the magnetic field.

ing, e.g., the local spin-density approximation (LSDA) as
was used in Ref. 16 are able to handle a large number of
electrons and/or magnetic ions. The LSDA is exact only in
the case of the homogeneous electron gas, and in practice,
works well also in most inhomogeneous systems. However,
in really highly correlated few-particle systems as discussed
in this paper, the LSDA might fail or be at least less accurate.

III. GROUND-STATE PROPERTIES
A. Zeeman energy

We first explore the magnetic field dependence of the total
Zeeman energy:

AZ = EC - EUC = A;learon + Al%/[n + (— A%XC) , (9)

which is the difference between energies in the presence and
the absence of a magnetic ion. It consists of three terms: the
difference between the Zeeman energies of the electrons,
AZeeon: the Zeeman energy describing the interaction of the
magnetic ion having spin M=5/2 with the magnetic field,
A?“; and the exchange interaction of the ion with the elec-
trons, —AZ*. A7 is just the so-called local Zeeman splitting
term as discussed in Ref. 15. This sum is basically the dif-
ference in the Zeeman energy of the electrons between the
cases with and without a magnetic ion plus the energy con-
tribution of the magnetic ion.

For N,=1, we find a total Zeeman energy that appears
linear in magnetic field. A similar linear behavior is also
found in the cases with N,> 1 but with different slopes (see
Fig. 1). Let us suppose, in Hamiltonian (1), that the contri-
bution from the last term (the local Zeeman energy or the
exchange interaction term) is zero. For instance this is the
case where a magnetic ion is located at the center of the
quantum dot with three electrons in the partially filled p
shell, in which the first two electrons fully fill the s shell and
the remaining one is in either of the orbitals of the p shell.
Then a perfect linear behavior of the total Zeeman energy is
found.

A closer look at A, gives us a slightly different picture, as
provided by taking the derivative (see the inset of Fig. 1).
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FIG. 2. (Color online) (a) Total Zeeman energy calculated for a
three-electron quantum dot with the magnetic ion at (0.5/y,0) and
Ac=0.5. The upper inset is the first derivative of the main plot with
respect to (). to visualize more clearly the cusps. The lower inset is
a zoom of the rectangular regions of the main plot. (b) The z pro-
jection of the total spin of the magnetic impurity (solid black
curve), of the electrons (dashed red curve), and the total angular
momentum (dash-dotted green curve).

Note that the total Zeeman term A, has pronounced cusps
and the numbers and positions of these cusps are different for
different numbers of electrons N,. There exists one at (),
=2.6 for a two-electron quantum dot, one at ().=3.4 for a
three-electron quantum dot, and two at {).=2.5 and 3.8 for
the four-electron quantum dot, with the magnetic ion located
at (0.41[,,0). The three-electron system exhibits a much
richer behavior when we increase the Coulomb interaction
strength to A-=0.5 as seen in Fig. 2(a), where we placed the
magnetic ion at (0.5,,0). Cusps, which are highlighted in
the two insets of Fig. 2(a), appear when the total angular
momentum and/or the total z projection of the spin of the
electrons change abruptly with magnetic field. Note that the
total Zeeman energy of a two-electron quantum dot in the
presence of the magnetic ion does not produce a similar be-
havior due to the fact that the z projection of the total spin is
zero, making the main contribution (from the Zeeman spin
term of the Mn impurity) negligible.

The Coulomb strength and the position of the magnetic
impurity affect the total Zeeman energy and influence the
number and the position of the cusps. The first pronounced
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cusp appears at lower magnetic field for larger Coulomb in-
teraction strength. This is a consequence of the competition
between the Coulomb energy and the energy gap of the
single-particle problem. A larger Coulomb strength (smaller
energy gap) leads to stronger electron-electron correlation
and consequently the electrons are more clearly separated
from each other. It results into a high probability of finding
that the electrons occupy higher-energy states. That also
means that the system transfers to a configuration with larger
S, and L, at smaller applied field.

We also found that the ground-state energy is sensitive to
the presence of the magnetic field. In zero magnetic field, the
ground state receives contributions from many different con-
figurations with z projection of the magnetic ion, M, from
—5/2 to 5/2. When a magnetic field is applied, the ground
state favors states with projection of the spin of the magnetic
ion down and the states with M,=-5/2 give the main con-
tribution to the ground state.

Figure 2(b) shows the average of the three quantities M,
S,, and L, of the three-electron quantum dot as a function of
the magnetic field for a Coulomb interaction strength A
=0.5. We realize that with increasing A, the (L.) ({S.)) ex-
hibits jumps at smaller critical €}, (compare with the green
dash-dot-dot curve in Fig. 1).

B. Antiferromagnetic coupling

Now we direct our attention to the very small magnetic
field behavior. There exists a very small region of the mag-
netic field where the total spin of electrons and the total spin
of the magnetic ion are oriented parallel. We found this ear-
lier in Ref. 15 for the zero magnetic field case. These results
are now extended to nonzero magnetic field. This is made
more clear in the upper inset of Fig. 3, where the crossing
point of the two terms, the Zeeman energies of the magnetic
ion (Ag[n) and the exchange interaction (A%5), occurs at Q..
=0.01 (converted to B~0.1 T for the considered system).
This ferromagnetic (FM) coupling extends further, up to
Q,.=0.04 (see the lower inset of Fig. 3).

It is worth noting that this ferromagnetic coupling is ex-
tended to a much larger magnetic field range (up to ),
=2.3) if we move the magnetic ion to the center of the quan-
tum dot (see Fig. 4). This can be understood as follows:
When the magnetic ion is located at the center of the dot and
the magnetic field is very small, the absolute value of AE/I“
always dominates over AS. This is opposite of the case
where the magnetic ion is located at (0.5/;,0). Recall that in
Ref. 15 we found for zero field that the exchange Zeeman
energy is minimum when the magnetic ion is at the center of
the quantum dot and approximately zero at positions very far
from the center of the quantum dot.

Figure 4 tells us that the magnetic field where the antifer-
romagnetic (AFM) coupling between electron and the mag-
netic ion starts depends on the position of the magnetic ion in
the quantum dot. The system with the magnetic impurity
located at (I,0) exhibits an antiferromagnetic coupling for
0,.=0.1, that is, larger than .=0.05 in the case of
(0.51,,0).

We have discussed the appearance of antiferromagnetism
in a three-electron quantum dot. Now we go back to the two
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FIG. 3. (Color online) Zeeman energy of the magnetic ion and
exchange interaction of a three-electron quantum dot with the mag-
netic ion located at (0.5/,0) and the Coulomb strength \=0.5.
The upper inset is a zoom of the small magnetic field region and the
lower one presents the averages of M,, S,, and L, for the ground
state at very small magnetic fields.

simpler cases with the number of electrons N,=1,2 (see
Fig. 5). Let us first discuss the results for N,=1 as given in
Fig. 5(a). The antiferromagnetic coupling between the elec-
tron and the magnetic ion starts at smaller magnetic field as
the magnetic ion is moved. This is different from the previ-
ous results for N,=3. The reason is as follows: For the quan-
tum dot with a single electron, the electron tends to accom-
modate permanently the s shell with (L.)=0 [see the inset of
Fig. 5(a)] in the ground state, while the exchange parameter

T
_g-%
e
e ]
E

-A,7¢ (mev)

7

008 24 27 30

0.00 0.04
Q=0 /o,

FIG. 4. (Color online) Exchange interaction of a three-electron
quantum dot with the magnetic ion located at three different posi-
tions, (0,0), (0.5[y,0), and (/y,0), for the Coulomb strength A\,
=0.5. The horizontal line at A7°=0 separates the A plane into
FM and AFM regions.

045321-4



MAGNETIC FIELD DEPENDENCE OF THE MANY-...

05F <8, (a)]
[ | t=—R, =(0,0) ]
) ——— )
LA, La g o)
r <M > -1 ;I
< fo05 - e —m—m—
T J[ 00 o 05 a-mmmE "
Er © o-0-0-0-0-0-0-9
Q i ]
5, [ AFM . ]
< o L M A--A--A--A- A
%
3.0
S S
=R, =00 ()
1.0~ ° Ry=(051,0) -
4 Ry =(1,0) -
[ Ng=2 ]
E’ I
vt — G ‘Mn AFM |

00 05 10 15 20 25 3.0

Q=0 /o

FIG. 5. (Color online) Exchange interaction of (a) a one-
electron and (b) a two-electron quantum dot with the magnetic ion
located at three different positions and the Coulomb strength Ao
=0.5. The inset of the upper plot shows the averages of the three
quantities M_, S, and L, with the ion located at (0.5/,,0) at small
magnetic fields. The horizontal line separates the plane into FM and
AFM regions in both two plots. The schematic diagram in (b) ex-
plains why the exchange energy is almost zero in the case N,=2.

in the s shell (J,,) is found to be maximum right at the center
of the quantum dot. Moving the magnetic ion away from the
center of the dot, this J, is found to be smaller and as a
consequence the exchange electron—-Mn interaction becomes
smaller than the electron Zeeman energy, leading to an anti-
ferromagnetic coupling at smaller magnetic field.

The story of N,=2 electrons [see Fig. 5(b)] is now inter-
esting since the two electrons accommodate the s shell with
spins antiparallel, making the total spin of the electron zero
in the ground state with almost unit probability. This leads to
zero contribution to the first term written in the last term in
Eq. (2) for diagonal elements. Therefore, the main contribu-
tion (even very small) to the exchange energy is now ex-
pected to come from coupling with configurations where one
of the electrons (spin down) stays in the s level and the other
occupies a higher level [see the schematic diagram in Fig.
5(b)]. In this diagram, the magnetic ion is assumed to be
located at the center of the dot with spin down (=5/2). The
coupling of the electron (spin up) in the s orbital with an
electron from either of the p shell is zero. The only nonzero
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FIG. 6. (Color online) Exchange interaction of a four-electron
quantum dot with the magnetic ion located at three different posi-
tions and the Coulomb strength \-=0.2. The horizontal line sepa-
rates the plane into FM and AFM regions. The inset shows the total
z projections of the M, S, and L, of the electron system with the
magnetic ion located at the center of the dot.

coupling is with an electron with the quantum numbers (1,0)
of the d shell (as shown in the diagram. This quantum state
would change if the ion is located away from the center of
the dot) with the amount of about —1072. This picture re-
mains valid until the magnetic field is high enough to excite
one electron from the s shell to a higher quantum state, form-
ing the ground state with two up spins antiferromagnetically
coupling with the magnetic ion. For smaller Coulomb inter-
action strength, the antiferromagnetic behavior occurs at
larger magnetic field since the two electrons repel each other
less and consequently they stay longer antiparallel in the s
shell.

From the N,=2 result, we may ask a question: whether a
four-electron quantum dot has similar properties since the
numbers of electrons in both cases are even and one may
have a situation where the total spin of the electrons is zero.
Indeed, if the magnetic ion is located at the center of the
quantum dot even though for N,=4 the outer shell is half
filled, this is possible as illustrated in Fig. 6, where the anti-
ferromagnetic coupling occurs at {).=3.87, at which the total
spin of the electrons reaches the maximum value (S,)=2. In
this case, the first two electrons will occupy the s shell and
the remaining two will occupy two of the five orbitals of the
p and d shells. This picture holds at small magnetic field.
However, there is a big difference in the exchange energy as
compared to the previous case of N,=2 where the ion is
shifted away from the center of the dot, e.g., in this plot at
(0.51,0). The exchange energy is much larger than the result
obtained for Ry;,=(0,0) because when the ion is out of the
center of the quantum dot, the two remaining electrons at
higher orbitals have a nonzero contribution in the diagonal
exchange elements dominating the exchange energy of the
ground state. This is the reason why the antiferromagnetic
transition occurs at smaller magnetic field (2,=2.5) as com-
pared to the case where the ion is at the center of the dot
(0,=3.87), although the pictures of the M, and L, transition
in these cases are similar.

To complete the picture for few-electron quantum dot sys-
tem, we will discuss the antiferromagnetic behavior for the
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FIG. 7. (Color online) Exchange interaction of a five-electron
quantum dot with the magnetic ion located at several positions and
the Coulomb strength \-=0.2. The horizontal line separates the
plane into FM and AFM regions. The inset shows S, alone vs mag-
netic field.

system with the highest number of electrons, N,=5, where
we were able to obtain accurate numerical results. We focus
on the small magnetic field region (see Fig. 7). For the mag-
netic ion at the center of the dot, the FM coupling is domi-
nant in the shown magnetic field region because the diagonal
exchange matrix elements dominate over the Zeeman ener-
gies of the electrons and of the magnetic ion. This is different
for the cases with the magnetic ion displaced a bit from
the center of the quantum dot. The ferromagnetic-
antiferromagnetic (FM-AFM) transition occurs at {),=0.07
and Q.=0.12 for Ry,=(0.5,,0) and Ry;,=(l,,0), respec-
tively. It is similar to the cases for the system with N,=1,3
due to the zero coupling between the orbitals from the p,d
shell with the s orbital. To observe the AFM behavior for the
system with the magnetic ion located at the center of the dot
where the diagonal exchange elements are almost zero, it is
crucial to include enough quantum orbitals (that rapidly in-
creases the size of the Hamiltonian matrix, resulting in very
time consuming calculations) so that one allows the electrons
to jump to higher-energy levels and having parallel spins as
previously shown for the case N,=4 (see Fig. 6). In that case,
the four-electron system exhibits an antiferromagnetic cou-
pling with the magnetic ion at the magnetic field where the
total z projection of the spin is maximum S,=2. The system
is strongly polarized. For the case N,=5, up to ,.=0.2, the
total §,=0.5 and the total L =1. The inset of Fig. 7 supports
the AFM behavior for the out of center Mn as obtained in the
main plot.

C. Phase diagram for the ferromagnetic-antiferromagnetic
transition

Now we change the Coulomb interaction strength and
explore the magnetic behavior as a function of the position
of the magnetic ion. From Fig. 8, it is clear that when
reducing the Coulomb interaction, the system undergoes a
ferromagnetic-to-antiferromagnetic transition at gradually
larger magnetic fields for Mn?** positions that are closer to
the center of the dot. We see that —A7* has a peak structure
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FIG. 8. (Color online) The magnetic ion position dependence of
the exchange interaction of a three-electron quantum dot for Cou-
lomb strengths \-=0.2, 0.5, and 2 at {).=0.4. The horizontal dotted
line at A7 =0 separates the plane into FM and AFM regions.

with a maximum at some specific position of the magnetic
ion; e.g., see the peak for the case \=0.2 (blue full circles).
However, it is certain that at high magnetic field, the system
is always antiferromagnetic.

The FM-AFM phase diagram for a three-electron quan-
tum dot in (A, (),) space is shown in Fig. 9 for two different
positions of the magnetic ion. When the magnetic ion is at
the center of the quantum dot (black curve with squares in
Fig. 9), the critical magnetic field increases as the Coulomb
interaction strength decreases. The reason is that increasing
the Coulomb interaction helps the electrons to approach
closer the magnetic ion and therefore the critical magnetic
field for the system to transit to the antiferromagnetic phase
decreases.

Now we move the magnetic ion away from the center of
the quantum dot and we obtain the phase diagram as shown
by the red curve (with solid circles) in Fig. 9. For A< 0.4,
the stability of the FM phase with respect to an applied mag-
netic field is strongly reduced and a small magnetic field
turns the three-electron system into the AFM phase. Note
that for sufficient strong electron-electron interaction (i.e.,
Nc=0.4), we obtain practically the same FM-AFM phase
diagram as for the case where the Mn ion is located at the

2.0 P IRRRRE LR I IULRE R T
: % —a=R,=(00) > () ]
i - -—~RMn_(0.2lo,0) 52
15[ ]
- Y 4
10[ ]
oo FM(1)“‘ AFM(1) 1
L M
05[
S _'___.___\.\A-FM(Z)
0.0 05 10 15 2.0 25 50 35 40 45

Qc=mc/oo0

FIG. 9. (Color online) Phase diagram for the ferromagnetic-
antiferromagnetic transition of a three-electron quantum dot with
the magnetic ion located at (0,0) [black squares refer to (1)] and
(21,=5.29 A,0) [red circles refer to (2)].
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FIG. 10. (Color online) Phase diagram for ferromagnetic-
antiferromagnetic transition of a three-electron quantum dot in an
applied field of ,=0.4 [black squares refer to (1)] and Q,=1.9 [red
circles refer to (2)].

center of the quantum dot. A remarkable re-entrant behavior
is found in the region 0.3 <\-<2 and 0.9<().<2.5, where
with increasing A- we go from an antiferromagnetic to a
ferromagnetic phase and back to an antiferromagnetic phase.
This unusual behavior is understood as follows: As the im-
purity is moved away from the center of the quantum dot, the
exchange matrix will have many nonzero off-diagonal terms
that lead to a smaller FM-AFM critical transition magnetic
field. Now let us turn our attention to the region A ~<<0.4. For
very small Coulomb interaction strength, the electrons will
repel each other only weakly and are therefore pulled toward
the magnetic ion (the nonzero exchange matrix elements in-
crease strongly), resulting in a very small FM-AFM mag-
netic field. For A=0.4, the electrons become more strongly
correlated and the critical field stays at about AL,
~0.02+0.07 from the result for Ry;,=0. If one moves the
ion further and further away from the center, the A~ 0.4
transition line moves to larger A\ values. For example, for
Ac=0.5 and the magnetic ion located at (0.5[;,0), the FM-
AFM critical transition occurs at 1,=0.08, which is much
smaller than 2.21 found for Ry, =(0.21,,0).

The dependence of the ferromagnetic-antiferromagnetic
transition of a three-electron quantum dot system on the po-
sition of the magnetic ion is summarized in the phase dia-
gram shown in Fig. 10 for two different magnetic fields (),
=0.4,1.9. We can predict that with slightly larger (smaller)
magnetic field, the slope of the curve will be larger (smaller).
From Fig. 9, we already learned that the FM-AFM transition
magnetic field is largest for the ion at the center of the quan-
tum dot, as also seen in Fig. 10. The re-entrant behavior of
the AFM phase as a function of A is found for small Ryy,/ [,
values, i.e., when the Mn ion is not too far from the center of
the quantum dot, in case the magnetic field is not too small.
The critical point (Ry,/ly,N¢)=(0.457,0.656) for Q.=1.9
moves down (up) with increasing (decreasing) magnetic
field.

D. Density and correlation

In high magnetic field, the magnetic ion tends to attract
electrons because they are oppositely polarized. Because the
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FIG. 11. (Color online) Radial density scaled by 2 calculated
for a three-electron quantum dot with the magnetic ion (white cross)
located at (0.5/,0) in (a) and (b) and at (0.8/),0) in (c) when the
Coulomb strength A-=0.5 in a magnetic field Q,.=6.4 [see (a)] and
Q=7 [see (b) and (c)]. (d) is the magnetic ion position dependence
of —AJ with the magenta circles indicating the respective calcu-
lated positions of the magnetic ion in (a)—(c). The red regions have
the highest value of radial density.

exchange interaction is small as compared to the Coulomb
interaction, the electrons and magnetic ion are arranged in
such a way that the electrons repel each other and also try to
be as close to the magnetic ion as possible. This picture holds
above the FM-AFM critical magnetic field.

To show this behavior explicitly, we studied the radial
density and the radial pair-correlation functions. Their re-
spective operators are defined as

Ne
p(N =2 &r-r) (10)
i=1
and
NL”
CO’O”(’::;,):E 5a'a'i5(F_ ri)(sa"oj&(;’ _rj)~ (11)
i#j

We plot in Fig. 11 the radial density of a three-electron quan-
tum dot that is polarized in high magnetic field for the case
that the Coulomb strength is A-=0.5 and the magnetic ion is
located at two different positions for two magnetic fields.
The electrons and the magnetic ion are antiferromagnetically
coupled. The strength of that coupling can be seen in Fig.
11(d), in which we plot the magnetic ion’s position depen-
dence of the exchange energy at two magnetic fields (),
=6.4 and 7. Those magnetic fields are typical in the sense
that the exchange term is found to be very large ({2,=6.4) or
the correlation between the electrons is very high (Q.=7).
Density plots are shown for Ry, at (0.5/,,0) and (0.81,,0).
We observe three distinct peaks of maximum probability.
They are found at (-0.44[,,0), (0.22,0.44)l,, and (0.22,
-0.44)l, in Fig. 1l1(a); (-0.63[y,0), (0.26,0.63),, and
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(0.26,-0.63)], in Fig. 11(b); and (-0.52/,,0), (0.26,0.52)/,,
and (0.26,-0.52)/, in Fig. 11(c). These figures show clearly
the interplay effect where the three electrons on one hand try
to be close to the magnetic ion and on the other hand repel
each other via the Coulomb potential energy. It results in the
merging of the radial density such that the higher the ex-
change energy is, the larger is the merging of the local
maxima in the electron density and the smaller are the cor-
relations. Figure 11(d) gives an idea about the variation of
—A% with the position of the magnetic ion and that it
reaches a maximum at (0.5/,,0) for 0,=7. In Fig. 11(c), the
three electrons are less attracted to the magnetic ion via the
antiferromagnetic coupling as compared to that in Fig. 11(b).
This is due to the fact that the —A%* for the case shown in
Fig. 11(b) is larger than that in Fig. 11(c). The electrons are
therefore found more correlated in the latter case, presented
by the extended red region in Fig. 11(c). Thereby, the corre-
lation between electrons in Fig. 11(c) is expected to be the
highest and that in Fig. 11(a) to be the smallest.

The position of the magnetic ion affects the ground-state
property as made clear in Fig. 12. We fix the spin state and
the position of one electron (indicated by the orange arrow)
and the position of the magnetic ion (white cross). The mag-
netic field is such that },=6.4 in Fig. 12(a) and ().=7 in the
others. It also reflects the fact that the system in Fig. 11(a)
exhibits the smallest correlation as compared to the other
two. This illustrates the point raised above about the density.
At the magnetic field ),.=7, the electrons are strongly polar-
ized, resulting in the red regions of the up-up spin-pair-
correlation function that tends to surround the magnetic ion.
We see that the three electrons are most likely to localize
around some specific positions defining a triangle with the
three electrons at the three vertices while they are attracted to
the magnetic ion. When we locate one electron at a position
closer to the magnetic ion [see Fig. 12(b)], the two peaks
decrease in amplitude as compared to those in Fig. 12(b).

E. Addition energy

The addition energy (often called the chemical potential)
is defined as the increase in the energy of the quantum dot
system when an electron is added: uy =Egs(N,)—Egs(N,
—1). This quantity can be measured experimentally; it is
plotted in Fig. 13 as a function of the magnetic field.

There are several cusps appearing in the addition energy
curves as a consequence of changes in the ground state.
These changes are due to variations in the z projection of the
total spin of the electrons and/or the z projection of the total
angular momentum of the system when the magnetic field
increases beyond some specific values. The presence of the
magnetic ion leads to more cusps and the position of these
cusps is also influenced by the number of electrons and the
position of the magnetic ion. The cusps are from either of the
two systems in the study. For instance, the green triangles in
Fig. 13 are for u3=FEgs(N,=3)—Egs(N,=2) has two cusps at
0.=2.6 and Q.=3.4. The cusp at the point {1,=2.6 comes
from the change in the configuration of the average of the
total z-projection spin and the total z projection of angular
momentum (S,,L,) of the two electrons in the quantum dot
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FIG. 12. (Color online) Spin-up pair-correlation functions scaled
by lé calculated for the quantum dot in Fig. 11 where one electron
(orange arrow) is pinned at one of the three most probable positions
of the electrons as obtained in Fig. 11. It is at (=0.44[,,0) in (a) for
Fig. 11(a), (-0.63[;,0) in (b) for Fig. 11(b), and (-0.52[,,0) in (c)
for Fig. 11(c). (br) The same correlation function for the case the
position of the fixed electron is closer to the ion [at (—0.3/,,0)] as
compared to (b). The position of the magnetic ion is indicated by
the white cross.

from (0,0) to (1,1). The other cusp ),=3.4 comes from the
change in the phase of the three-electron quantum dot from
(0.5,1) to (1.5,3). It is similar to the case for u, (blue left-
pointing triangles), where the cusp appears at ).=3.4. At
this point, we observed a change from configuration (0,2) to
(1,3). The remaining one, .=3.9, is from the four-electron
case when its configuration changes from (1,3) to (2,6).

F. Vortex structure: Many-body correlations

Another way to obtain information on the correlations that
are present in the many-particle wave function is to investi-
gate the vortex structure. At a vortex the many-body wave
function is zero and is characterized by a change in phase of
21 when we go around this point.

The zeros of the wave function are similar to flux quanta
when, e.g., the wave function corresponds to the order pa-
rameter in a superconductor. The fixed electrons and the zero
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FIG. 13. (Color online) Addition energy for different numbers of
electrons. The magnetic ion is located at (0.41/,,0) and the Cou-
lomb interaction strength is A=0.2.

of the wave function follow closely the displaced electron
and one may say that the electron plus its zero forms a
composite-fermion object. The composite-fermion!3!7:18
(and references therein) is a collective quasiparticle that con-
sists of one electron bound to an even number of vortices
(flux quanta). The composite-fermion concept introduces a
new type of quasiparticle that is used to understand the frac-
tional quantum Hall effect in terms of the integer quantum
Hall effect of these composite fermions.

To obtain the zeros of the wave function of the system
with N, electrons, we fix N,—1 electrons at some positions
inside the quantum dot and leave the remaining one free. The
resulting reduced wave function gives the probability of
finding the remaining electrons at different positions in the
quantum dot. The zeros of this function are those points
where the phase of the wave function changes by 2. As an
example, we investigate the situation of a three-electron
quantum dot.

Figure 14 shows the vortex pictures of a three-electron
quantum dot containing a magnetic ion located at positions
(see the white cross) that are identical to its positions in Fig.
11(a). Two among three electrons are fixed at the respective
peaks in the electron density. The red and black regions refer
to the highest (27) and lowest phases (0), respectively.
Those plots show that there are always two vortices near the
pinned electrons’ positions. For example, the number of vor-
tices pinned to each electron in the case N,=3 at Q.=11is 2,
describing the system at filling factor V=% ~1/3. Note
also that one of the vortices appears to be pihned at a posi-
tion very close to the Mn ion.

We realize that moving the magnetic impurity to a differ-
ent position changes the relative positions of the vortices that
are pinned to the electrons with respect to one another, as
shown in Figs. 14(a) and 14(c). As the electrons are antifer-
romagnetically coupling to the magnetic ion, this kind of
movement consequently depends on the position of the mag-
netic ion.

In the case A-=0.5, we found that the average of the
maximum z projection of the total angular momentum is
(L.)=9 and the two vortices appear at the external field (2.
=3.0. Apparently, the larger A\ is, the smaller is the (). for
which the first two vortices appear at the pinned electrons.

PHYSICAL REVIEW B 78, 045321 (2008)

FIG. 14. (Color online) Contour plot for the phase of the re-
duced wave function of a three-electron quantum dot in magnetic
field Q). =11 with the magnetic ion (white cross) located at (0.5/;,0)
in (a) and (b) and at (0.8,,0) in (c) for Coulomb strength A-=0.5.
Two fixed electrons (indicated by the two magenta circles) are lo-
cated at the two peaks appearing in the radial density: (—0.63/,,0)
and (0.26,0.63)l; in (a) and (c), and (-0.63[y,0) and (0.26,
-0.63)[, in (b).

IV. ENERGY SPECTRUM

In the presence of an external magnetic field, the many-
fold degeneracy of the energy spectrum of the system is
lifted. Figure 15(a) illustrates that point for the case of three
electrons. In the absence of the interaction between the elec-
trons and the magnetic ion and in the absence of a magnetic
field (blue squares), the energy spectrum is sevenfold degen-
erate for the first seven lowest energy levels. The next level
is then fivefold degenerate, the next is sevenfold degenerate,
and so on. The origin of this was explained in Ref. 15 and is
due to the coupling of the electrons and the magnetic ion.
When the magnetic field is different from zero [see the red
circles in Fig. 15], the degeneracy is lifted. In the inset of
Fig. 15 we plot (M) (magenta triangles) and (S,) (dark blue
triangles) as a function of magnetic field for the sixth level.
The averages of (M) and (S,) change abruptly as compared
to those found for the ground-state energy; e.g., see Fig. 2.
M, and (S,) of the sixth state jump between two different
values, e.g., —1.5 and —2.5 for (M_) and 0.5 and 1.5 for (S.),
as a function of the field. This is a consequence of the anti-
crossings of energy levels, as will be apparent later. The
results for four- and five-electron quantum dots are also
shown in Fig. 15. We see the degeneracy of 8, 6, 4, and 12
for the first 30 levels in the case N,=4 and of 7, 5, 7, 5, 5.
Level 30 has the same degeneracy with the next energy level
beyond the first 30 for the case N,=5 in B=0 T.

To have a clearer picture of the energy spectrum of the
quantum dot system, we plot in Figs. 16—18 the magnetic
field dependence of the first 120 energy levels for N,=1, 2,
and 3, respectively. The spectra at small magnetic fields are
enlarged (see insets) to show the Zeeman splitting and the
nearly linear behavior of the energy levels. Remember that
this is due to the coupling of the electron spins with the
magnetic ion spin. For N,=1 the first two levels for B=0 are
seven- and fivefold degenerate, respectively. (The sevenfold
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FIG. 15. (Color online) The energy spectra of the first 30 levels I .
of the three- (top), four- (middle), and five-electron (bottom) quan- O T e s i L
tum dots with the magnetic impurity located at (0.5/,,0). The Cou- L1695 T 4
lomb strength is Ac=0.5 with magnetic fields Q,=0.0 (blue 300 [ {1690 st ]
squares) and .=0.4 (magenta circles). The inset of the top figure =~ | L1685k ] 4140
shows the averages of M (dark blue triangles) and S (red triangles) g : -1
as a function of (), of the sixth energy level. E FF
> 250
degeneracy is due to the ferromagnetic coupling of the ° r
s-shell electron spin 1/2 with the magnetic ion spin 5/2. The o
fivefold degeneracy is due to that of that electron now with > RS
spin —1/2 to the magnetic ion with spin 5/2.). A closer in- ® 200
spection (see Fig. 16) tells us that these 12 levels are ex- w
change split into two bundles of 7 and 5 levels (inset of the
inset of Fig. 16). Note that there is a first large energy gap at
very small fields between the first 12 levels and the next 24 150
ones as seen in Fig. 16, while that kind of gap appears be- | | |

tween the first 6 and the next 36 for N,=2 (Fig. 17). For
N,=3 (Fig. 18), this kind of gap appears after the first 24
energy levels. The origin is the coupling of the third electron,
which can reside at either two states of the p shell while the
s shell is already fully filled, with the magnetic ion with six
z components of the spin at very small fields, i.e., the in-

1.0 15 20 25 3.0

QC= coc/oo0

FIG. 17. (Color online) The same as Fig. 16 but now for the
two-electron quantum dot. The inset of the inset is a zoom of the
7th—24th levels for magnetic field close to zero.
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FIG. 18. (Color online) The same as Fig. 16 but now for the
three-electron quantum dot.

With increasing magnetic field, we see that for N,=1
there is periodically an opening of energy gaps in the spec-
trum. Similar energy gaps have been found earlier (as an
example, see Ref. 19) for a quantum dot without a magnetic
impurity and are a consequence of the electron with twofold
spin degeneracy filling the equally gapped-energy single-
particle quantum states with different sets of the radial and
angular quantum numbers. Note that for N,=2,3, these gaps
have disappeared.

The spectra exhibit a lot of crossings and anticrossings.
Their number has increased as compared to that in the quan-
tum dot case without a magnetic ion because of the Zeeman
splitting of the Mn spin. When the applied field increases, the
gaps in the spectrum of N,=1 are still open and appear more
often than in the cases of N,=2,3. Once again, we see a lot
of cusps in the energy levels. That reminds us of the abrupt
changes in the configuration of the system with magnetic
field as discussed before for the ground state.

V. THERMODYNAMIC PROPERTIES

A. Magnetization and susceptibility

We first calculate the magnetization and susceptibility of
the system: M=-JEgg/dB and y=JdM/JB at zero tempera-
ture. The magnetization of a quantum dot with the magnetic
ion located at (0.5/,,0) with N,=2,3 electrons is plotted in
Fig. 19. We see several jumps that are a consequence of
changes in the ground state, e.g., changes in (L.) (see Sec.
IV). For example, the magnetization of the three-electron
quantum dot as plotted in Fig. 19(b) for the case \-=0.2 and
the magnetic ion at (0.5/,,0) has a step at ,=3.3. Conse-
quently, the susceptibility also has a peak at ).=3.3. The
same thing happens at .=1.4, 4.1, and 6.8 for A\=1.1 in
the magnetization and the susceptibility.

For nonzero temperature, the temperature dependence
of the magnetization and susceptibility is defined by M(T)
=—KE(T))/dB and x(T)=dM(T)/ B, respectively. The sta-
tistical average (E(T)) is calculated as

PHYSICAL REVIEW B 78, 045321 (2008)
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FIG. 19. (Color online) Magnetization of the ground state of the
two- and three-electron quantum dots with the magnetic ion located
at (0.5/(,0) for three values of the Coulomb strength: A-=0.2, 0.5,
and 1.1.

ENa E o EdksT
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a=1

(EN.T.Ryin)) = (12)

where the sum is over the energy levels as displayed in, e.g.,
Fig. 15.

These quantities are explored in Fig. 20 for N,=3 and a
few different temperatures (including the zero-temperature
case). With increasing temperature, the jumps become
smoother. A very low magnetic field peak shows up because
for T#0 we have M=0 at ().=0.

B. Heat capacity

An important quantity that is related to the storage of
energy is the heat capacity:

5
——T=0K
c --- T=58K
% 0 T=116 K
E
e L N\ — T=232K
5 N T=313K

FIG. 20. (Color online) Temperature dependence of the magne-
tization and susceptibility for a three-electron quantum dot with the
magnetic ion located at (0.5/),0) and \-=0.2.
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Heat capacity (k)

FIG. 21. (Color online) The heat capacity vs temperature of a
three-electron quantum dot with the magnetic ion located at three
different positions. The Coulomb interaction strength is 1.0 and the

magnetic field Q.=0.5 (three lower curves) and 7.5 (three upper
curves).

a<E‘()\a T’RMn)>

CV()\’T’RMn) = (9T

(13)

The heat capacity is investigated as a function of the Cou-
lomb strength \, temperature 7, magnetic field, and the po-
sition of the impurity Ryy,.

We plot in Fig. 21 the specific heat for two values of the
magnetic field, i.e., .=0.5 and .=7.5, and three typical
positions of the magnetic ion. For weak fields, the three elec-
trons start to polarize. We see that the position of the main
peak moves toward higher temperature as the magnetic ion is
moved away but not too far from the center of the dot. For
the high magnetic field case, the three electrons are strongly
polarized and we see a different behavior in the shift of the
main peak. This results from the change in the statistical
average of the energy levels at different fields.

Now we examine the behavior of the heat capacity at a
specific temperature as a function of magnetic field. Figures
22-24 are the plots of the magnetic field dependence of the
heat capacity of three-electron (at two Coulomb interaction
regimes) and four-electron quantum dots at some specific

B

Heat capacity (k)

0.0

Qc=u)c/(o0

FIG. 22. (Color online) The heat capacity vs magnetic field of a
three-electron quantum dot with the magnetic ion located at

(0.411y,0), A=0.2, at several temperatures: 23, 116, 174, and 209
K.
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FIG. 23. (Color online) The heat capacity vs magnetic field of a
three-electron quantum dot with the magnetic ion located at
(0.51y,0), A\=0.5, and the temperatures are 5.8 and 11.6 K.

temperatures and two different A\-=0.2,0.5. The peak at
small magnetic fields broadens and moves to higher fields
with increasing temperature. The heat capacity exhibits a
number of peaks and a clear minimum around, e.g., o,
=3.4 as shown in Fig. 22. Recall that this field corresponds
to a cusp in the energy versus magnetic field behavior as
discussed previously in Sec. III A. At very low temperatures,
this cusp still affects the heat capacity through the sharpness
of the minimum as shown in the figure and this gradually
becomes small at high temperatures. In Fig. 23, we see a
very interesting behavior of the heat capacity at ).=~2.3:
The single peak becomes a double peak as the temperature
increases from 7=5.8 K to T=11.6 K. This is due to the

cusps now occurring around this field in the low-energy lev-

els of the spectrum of the three-electron quantum dot system

as observed in Fig. 18. Moreover, the structure of the heat

capacity is more complex (more peaks) with increasing .
This is made clear if one looks back at the previous discus-
sion related to Figs. 1 and 2(a).

For the case N,=4, the heat capacity exhibits more peaks
as compared to the case N,=3 and the behavior of the peaks
with increasing temperature is also very different. Tempera-
ture affects the heat capacity of the system in the sense that it

increases the peak values and separates them in magnetic
field.
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FIG. 24. (Color online) The heat capacity vs magnetic field of a
four-electron quantum dot with the magnetic ion located at
(0.411y,0), A=0.2 plotted for several temperatures.
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The Coulomb interaction strength changes the structure of
the magnetic field dependence of the heat capacity and is
illustrated in Figs. 22 and 23. The peak of the heat capacity
for the case with smaller Coulomb interaction strength ap-
pears at higher magnetic field as compared to the case with a
larger one.

VI. DISCUSSIONS

Due to the presence of the magnetic ion (and electron-
electron interaction), electrons in the ground state do not
always completely polarize in the presence of an external
magnetic field. The configurations are mixed, consisting of
electrons with spins up and down. However for very large
magnetic field, the magnetic ion tends to pull the electrons
closer to the ion, forming a ringlike electron-density profile.
These are the consequences of the interplay between several
effects such as the Zeeman effect (on the electrons’ and the
magnetic ion’s spins), the Coulomb repulsion, and the spin-
exchange interaction. This competition results in a crossover
from ferromagnetic-to-antiferromagnetic coupling between
the electrons and the magnetic ion at some specific magnetic
field. Interestingly, this effect is observed to appear at higher
magnetic field when we move the magnetic ion farther from
the origin of the quantum dot. A re-entrant behavior of the
FM-AFM transition is found as function of the Coulomb
interaction strength when the magnetic ion is moved out (but
not too far) from the center of the quantum dot.

The energy levels exhibit cusps as a function of the mag-
netic field which correspond to changes in the configuration
of the system as expressed by the values of ({S.),(L.)). These

PHYSICAL REVIEW B 78, 045321 (2008)

cusps move to lower magnetic field with increasing Coulomb
interaction strength. The number of cusps increases with in-
creasing number of electrons. These cusps show up in the
addition energy.

The transformation of the electron system to those of
composite fermions is studied. In high magnetic fields, the
electrons attach an even number of quantized vortices, which
we made clear by examining the many-body ground-state
wave function in the presence of a magnetic ion. Unlike the
case without a magnetic ion where all the vortices are tightly
bound to the electrons, when we fix the electrons at different
positions, the system of vortices stays pinned to the electrons
and moves with the electrons but the relative positions of the
vortices are modified.

The contribution of the local Zeeman splitting energy to
the total energy of the system in large external fields is very
small as compared to the contributions from the other parts.
However, a slight movement of the position of the magnetic
ion inside the quantum dot affects the result slightly.

With increasing applied magnetic field, each time the sys-
tem jumps to a different ((L.),(S.)) configuration leads to the
appearance of a peak in the thermodynamic quantities as,
e.g., the susceptibility and the heat capacity. In the presence
of the magnetic ion, the structure of peaks in the heat capac-
ity changes with the position of the magnetic ion. As the
temperature increases, these peaks split into two peaks and
become smoother.
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